151 research outputs found

    Anisotropy in the Antiferromagnetic Spin Fluctuations of Sr2RuO4

    Full text link
    It has been proposed that Sr_2RuO_4 exhibits spin triplet superconductivity mediated by ferromagnetic fluctuations. So far neutron scattering experiments have failed to detect any clear evidence of ferromagnetic spin fluctuations but, instead, this type of experiments has been successful in confirming the existence of incommensurate spin fluctuations near q=(1/3 1/3 0). For this reason there have been many efforts to associate the contributions of such incommensurate fluctuations to the mechanism of its superconductivity. Our unpolarized inelastic neutron scattering measurements revealed that these incommensurate spin fluctuations possess c-axis anisotropy with an anisotropic factor \chi''_{c}/\chi''_{a,b} of \sim 2.8. This result is consistent with some theoretical ideas that the incommensurate spin fluctuations with a c-axis anisotropy can be a origin of p-wave superconductivity of this material.Comment: 5 pages, 3 figures; accepted for publication in PR

    Electromagnetic Monitoring of Semiconductor Ageing

    Get PDF
    AbstractThis paper reports on the outcomes of the project “Electromagnetic Monitoring of Semiconductor Ageing” funded through the EPSRC Centre for Innovative Manufacturing in Through-life Engineering Services. The basis of the feasibility study reported in this paper is that all active devices exhibit non-linear behaviour and the behaviour of those devices will change as they age. As a result, the radiation or re-radiation of intermodulation products will change as the device ages. The goal of the project is to verify that this change in non-linear behaviour could be identified in a way that does not require modification of existing circuitry, thus allowing through-life and non-destructive monitoring of devices for signs of early deterioration. Results obtained from this work have been very encouraging and have set the scene for further development of the techniques to include degradation fingerprinting and system health monitoring

    Detailed study of the ac susceptibility of Sr2RuO4 in oriented magnetic fields

    Get PDF
    We have investigated the ac susceptibility of the spin triplet superconductor Sr2_2RuO4_4 as a function of magnetic field in various directions at temperatures down to 60 mK. We have focused on the in-plane field configuration (polar angle θ90\theta \simeq 90^{\circ}), which is a prerequisite for inducing multiple superconducting phases in Sr2_2RuO4_4. We have found that the previous attribution of a pronounced feature in the ac susceptibility to the second superconducting transition itself is not in accord with recent measurements of the thermal conductivity or of the specific heat. We propose that the pronounced feature is a consequence of additional involvement of vortex pinning originating from the second superconducting transition.Comment: Accepted for publication in Phys. Rev.

    Interface superconductivity in the eutectic Sr2RuO4-Ru: 3-K phase of Sr2RuO4

    Get PDF
    The eutectic system Sr2RuO4-Ru is referred to as the 3-K phase of the spin-triplet supeconductor Sr2RuO4 because of its enhanced superconducting transition temperature Tc of ~3 K. We have investigated the field-temperature (H-T) phase diagram of the 3-K phase for fields parallel and perpendicular to the ab-plane of Sr2RuO4, using out-of-plane resistivity measurements. We have found an upturn curvature in the Hc2(T) curve for H // c, and a rather gradual temperature dependence of Hc2 close to Tc for both H // ab and H // c. We have also investigated the dependence of Hc2 on the angle between the field and the ab-plane at several temperatures. Fitting the Ginzburg-Landau effective-mass model apparently fails to reproduce the angle dependence, particularly near H // c and at low temperatures. We propose that all of these charecteric features can be explained, at least in a qualitative fashion, on the basis of a theory by Sigrist and Monien that assumes surface superconductivity with a two-component order parameter occurring at the interface between Sr2RuO4 and Ru inclusions. This provides evidence of the chiral state postulated for the 1.5-K phase by several experiments.Comment: 7 pages and 5 figs; accepted for publication in Phys. Rev.

    Transport and the Order Parameter of Superconducting Sr2_2RuO4_4

    Full text link
    Recent experiments make it appear more likely that the order parameter of the unconventional superconductor Sr2_2RuO4_4 has a spin-triplet ff-wave symmetry. We study ultrasonic absorption and thermal conductivity of superconducting Sr2_2RuO4_4 and fit to the recent data for various ff-wave candidates. It is shown that only fx2y2f_{x^2-y^2}-wave symmetry can account qualitatively for the transport data.Comment: 4 pages, 2 figures, references added and update

    Low temperature electronic properties of Sr_2RuO_4 II: Superconductivity

    Full text link
    The body centered tetragonal structure of Sr_2RuO_4 gives rise to umklapp scattering enhanced inter-plane pair correlations in the d_{yz} and d_{zx} orbitals. Based on symmetry arguments, Hund's rule coupling, and a bosonized description of the in-plane electron correlations the superconducting order parameter is found to be a orbital-singlet spin-triplet with two spatial components. The spatial anisotropy is 7%. The different components of the order parameter give rise to two-dimensional gapless fluctuations. The phase transition is of third order. The temperature dependence of the pair density, specific heat, NQR, Knight shift, and susceptibility are in agreement with experimental results.Comment: 20 pages REVTEX, 3 figure

    Low temperature electronic properties of Sr_2RuO_4 I: Microscopic model and normal state properties

    Full text link
    Starting from the quasi one-dimensional kinetic energy of the d_{yz} and d_{zx} bands we derive a bosonized description of the correlated electron system in Sr_2RuO_4. At intermediate coupling the magnetic correlations have a quasi one-dimensional component along the diagonals of the basal plane of the tetragonal unit cell that accounts for the observed neutron scattering results. Together with two-dimensional correlations the model consistently accounts for the normal phase specific heat, cyclotron mass enhancement, static susceptibility, and Wilson ratio and implies an anomalous high temperature resistivity.Comment: 12 pages REVTEX, 6 figure

    Modeling of the transient interstitial diffusion of implanted atoms during low-temperature annealing of silicon substrates

    Full text link
    It has been shown that many of the phenomena related to the formation of "tails" in the low-concentration region of ion-implanted impurity distribution are due to the anomalous diffusion of nonequilibrium impurity interstitials. These phenomena include boron implantation in preamorphized silicon, a "hot" implantation of indium ions, annealing of ion-implanted layers et cetera. In particular, to verify this microscopic mechanism, a simulation of boron redistribution during low-temperature annealing of ion-implanted layers has been carried out under different conditions of transient enhanced diffusion suppression. Due to the good agreement with the experimental data, the values of the average migration length of nonequilibrium impurity interstitials have been obtained. It has been shown that for boron implanted into a silicon layer preamorphized by germanium ions the average migration length of impurity interstitials at the annealing temperature of 800 Celsius degrees be reduced from 11 nm to approximately 6 nm due to additional implantation of nitrogen. The further shortening of the average migration length is observed if the processing temperature is reduced to 750 Celsius degrees. It is also found that for implantation of BF2 ions into silicon crystal, the value of the average migration length of boron interstitials is equal to 7.2 nm for thermal treatment at a temperature of 800 Celsius degrees.Comment: 10 pages, 6 figures, RevTe

    Geometric origin of mechanical properties of granular materials

    Full text link
    Some remarkable generic properties, related to isostaticity and potential energy minimization, of equilibrium configurations of assemblies of rigid, frictionless grains are studied. Isostaticity -the uniqueness of the forces, once the list of contacts is known- is established in a quite general context, and the important distinction between isostatic problems under given external loads and isostatic (rigid) structures is presented. Complete rigidity is only guaranteed, on stability grounds, in the case of spherical cohesionless grains. Otherwise, the network of contacts might deform elastically in response to load increments, even though grains are rigid. This sets an uuper bound on the contact coordination number. The approximation of small displacements (ASD) allows to draw analogies with other model systems studied in statistical mechanics, such as minimum paths on a lattice. It also entails the uniqueness of the equilibrium state (the list of contacts itself is geometrically determined) for cohesionless grains, and thus the absence of plastic dissipation. Plasticity and hysteresis are due to the lack of such uniqueness and may stem, apart from intergranular friction, from small, but finite, rearrangements, in which the system jumps between two distinct potential energy minima, or from bounded tensile contact forces. The response to load increments is discussed. On the basis of past numerical studies, we argue that, if the ASD is valid, the macroscopic displacement field is the solution to an elliptic boundary value problem (akin to the Stokes problem).Comment: RevTex, 40 pages, 26 figures. Close to published paper. Misprints and minor errors correcte
    corecore